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Abstract: The aim of the present paper is to prove some results on the properties of LP-
Sasakian manifolds under D-homothetic deformations. In the later sections we give several
results on some properties which are conformal under the mentioned deformations. Lastly,
we illustrate the main theorem by giving a detailed example.
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§1. Introduction

The notion of Lorentzian almost para-contact manifolds was introduced by K. Matsumoto [3].
Later on, a large number of geometers studied Lorentzian almost para-contact manifold and
their different classes, viz., Lorentzian para-Sasakian manifolds and Lorentzian special para-
Sasakian manifolds [4], [5], [6], [7]. In brief, Lorentzian para-Sasakian manifolds are called LP-
Sasakian manifolds. The study of LP-Sasakian manifolds has vast applications in the theory of
relativity.

In an n-dimensional differentiable manifold M, (#,&,m) is said to be an almost paracontact
structure if it admits a (1, 1) tensor ficld ¢ , a timelike contravariant vector field £ and a 1-form
7 which satisfy the relations:

n(€) = -1, (1.1)
X = X +n(X)E, (1.2)

for any vector field X on M. In an n-dimensional almost paracontact manifold with structure
(¢,&,m), the following conditions hold:

¢ =0, (1.3)
72045: 07 (14)
rank ¢ =n— 1. (1.5)

Let M™ be differentiable manifold with an almost paracontact structure (6.€,m). If there
exists a Lorentzian metric which makes £ a timelike unit vector field, then there exists a

'Received September 11, 2018, Accepted May 24, 2019.



42

Barnali Laha

tensor as follows:

R(e1,e2)ez = 3¢y, Rle1,ea)er = ey, R(ez,e3)es = —e,,
Re1,ea)es = 0, R(e1,ea)er = —es, Rez, ea)er = eg,

Rie1,e2)es = 0.

In equation (3.22) we put X = e, Y =ge1, Z =e;. Taking inner product with $e1 we obtain

a?(el,q&el) — K(ei,de1) =a — -(1;.

Hence, by this example Theorem 3.4 is verified.
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