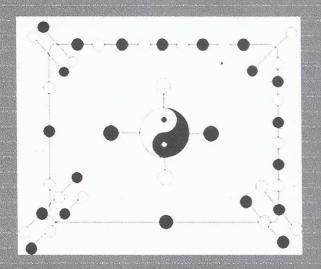


ISSN 1937 - 1055 VOLUME 2, 2019

INTERNATIONAL JOURNAL OF MATHEMATICAL COMBINATORICS



EDITED BY

THE MADIS OF CHINESE ACADEMY OF SCIENCES AND ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS, USA

June, 2019

D-homothetic Deformations of Lorentzian Para-Sasakian Manifold

Barnali Laha

(Department of Mathematics, Shri Shikshayatan College, Kolkata, India)

E-mail: barnali.laha87@gmail.com

Abstract: The aim of the present paper is to prove some results on the properties of LP-Sasakian manifolds under D-homothetic deformations. In the later sections we give several results on some properties which are conformal under the mentioned deformations. Lastly, we illustrate the main theorem by giving a detailed example.

Key Words: D-homothetic deformation, LP-Sasakian manifold, ϕ -section, sectional curvature.

AMS(2010): 53C15, 53C25.

§1. Introduction

The notion of Lorentzian almost para-contact manifolds was introduced by K. Matsumoto [3]. Later on, a large number of geometers studied Lorentzian almost para-contact manifold and their different classes, viz., Lorentzian para-Sasakian manifolds and Lorentzian special para-Sasakian manifolds [4], [5], [6], [7]. In brief, Lorentzian para-Sasakian manifolds are called LP-Sasakian manifolds. The study of LP-Sasakian manifolds has vast applications in the theory of relativity.

In an n-dimensional differentiable manifold M, (ϕ, ξ, η) is said to be an almost paracontact structure if it admits a (1,1) tensor field ϕ , a timelike contravariant vector field ξ and a 1-form η which satisfy the relations:

$$\eta(\xi) = -1,\tag{1.1}$$

$$\phi^2 X = X + \eta(X)\xi,\tag{1.2}$$

for any vector field X on M. In an n-dimensional almost paracontact manifold with structure (ϕ, ξ, η) , the following conditions hold:

$$\phi \xi = 0, \tag{1.3}$$

$$\eta \circ \phi = 0, \tag{1.4}$$

$$rank \ \phi = n - 1. \tag{1.5}$$

Let M^n be differentiable manifold with an almost paracontact structure (ϕ, ξ, η) . If there exists a Lorentzian metric which makes ξ a timelike unit vector field, then there exists a

¹Received September 11, 2018, Accepted May 24, 2019.

tensor as follows:

$$R(e_1, e_2)e_2 = 3e_1$$
, $R(e_1, e_2)e_1 = 3e_2$, $R(e_2, e_3)e_3 = -e_2$, $R(e_1, e_3)e_2 = 0$, $R(e_1, e_3)e_1 = -e_3$, $R(e_2, e_3)e_2 = e_3$, $R(e_1, e_2)e_3 = 0$.

In equation (3.22) we put $X=e_1, Y=\phi e_1, Z=e_1$. Taking inner product with ϕe_1 we obtain

$$a\overline{K}(e_1,\phi e_1) - K(e_1,\phi e_1) = a - \frac{1}{a}.$$

Hence, by this example Theorem 3.4 is verified.

References

- A. Sarkar, M.Sen, On invariant submanifolds of LP-Sasakian manifold, Extracta Mathematicae, Vol.27, No.1(2012), 145-154.
- [2] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol.509, Springer Verlag, Berlin, 1976.
- [3] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(1989), 151-156.
- [4] K. Matsumoto, I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.), 47 (2) (1988), 189-197.
- [5] K. Matsumoto, I. Mihai, R. Rosca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc., 32 (1) (1995),17-31.
- [6] I. Mihai, R. Rosca, On Lorentzian P-Sasakian Manifolds in Classical Analysis, (Kazimierz Dolny, 1991, Tomasz Mazur, Ed.), World Scientific Publ. Co., Inc., River Edge, NJ, 1992, 155-169.
- [7] G.P. Pokhariyal, Curvature tensors in Lorentzian para-Sasakian manifold, Quaestiones Math., 19 (1-2) (1996), 129-136.
- [8] S.Tanno, The topology of contact Riemannian manifolds, Tohoku Math. J., 12(1968), 700-717.
- [9] U.C. De, A.A.Shaikh, Complex Manifolds and Contact Manifolds, Narosa Publishing House Private Limited, 2009.
- [10] D. Narain, S. K. Yadav, S. K. Dubey, On projective φ-recurrent Lorentzian para-Sasakian manifolds, Global Journal of Mathematical Sciences: Theory and Practical, Vol. 2, No.1 (2010), 265-270.

Contents: Computing Zagreb Polynomials of Generalized xyz-Point-Line Transformation On (j,m) Symmetric Convex Harmonic Functions On M-Projective Curvature Tensor of a (LCS),-Manifold By Divyashree G, and Venkatesha D-homothetic Deformations of Lorentzian Para-Sasakian Manifold By Barnali Laha......34 Position Vectors of the Curves in Affine 3-Space According to Special A Generalization of Some Integral Inequalities for Multiplicatively P-Functions C-Geometric Mean Labeling of Some Cycle Related Graphs Neighbourhood V₄-Magic Labeling of Some Shadow Graphs By Vineesh K.P. and Anil Kumar V..... Open Packing Number of Triangular Snakes Second Status Connectivity Indices and its Coindices of Composite Graphs A Note on Detour Radial Signed Graphs A Note on 3-Remainder Cordial Labeling Graphs By R.Ponraj, K.Annathurai and R.Kala119

An International Journal on Mathematical Combinatorics

