

ISSN 1937 - 1055 VOLUME 2, 2017

INTERNATIONAL JOURNAL OF MATHEMATICAL COMBINATORICS

EDITED BY

THE MADIS OF CHINESE ACADEMY OF SCIENCES AND ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS, USA

June, 2017

D-Conformal Curvature Tensor in Generalized (κ, μ) -Space Forms

Barnali Laha

(Department of Mathematics, Shri Shikshayatan College, Kolkata, India)

E-mail: barnali.laha87@gmail.com

Abstract: The object of the first two sections is to give brief history of generalized (κ, μ) space forms and some basic results related to such manifold. In the last section we have derived few results regarding D-conformal curvature tensor in generalized (κ, μ) space-forms.

Key Words: Generalized (κ, μ) -space form, D-conformal curvature tensor, η -Einstein manifold.

AMS(2010): 53B25, 53C15, 53C25, 53D15.

§1. Introduction

In [1], Carriazo jointly with P. Alegre and D.E. Blair defined a generalized Sasakian space form as an almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor R is given by

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$

$$+f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$
(1.1)

for any vector fields X, Y, Z on M.

In particular a Sasakian manifold $M(\phi, \xi, \eta, g)$ is said to be a Sasakian space form if all the ϕ -sectional curvatures $K(X \wedge \phi X)$ are equal to a constant c, where $K(X \wedge \phi X)$ denotes the sectional curvature of the section spanned by the unit vector field X, orthogonal to ξ and ϕX . Later on many scientists R. Al-Ghefari, F. R. Alsomy [2],[5], M. H. Shahid have studied the CR-submanifolds of generalized Sasakian space forms. After them Ricci curvature of contact CR-submanifolds of such space were studied in [6].

In [2] authors studied contact metric and generalized Sasakian-space forms. In [7] and [8] authors studied locally ϕ -symmetric and η -recurrent Ricci tensor and also studied the projective curvature tensor respectively. Generalized Sasakian space form with few properties like conformally flat, locally symmetric were studied by Kim [9].

In recent paper [10], the authors (jointly with M. M. Tripathi) defined a generalized (κ, μ) space form as an almost contact metric manifold $(M^{2n+1}, \phi, \xi, \eta, g)$ whose curvature tensor is

 $^{^{1}\}mathrm{Received}$ July 12, 2016, Accepted May 16, 2017.

References

- P. Alegre, D.E.Blair and A. Carriazo, Generalized Sasakian-space form, Israel J. Math., 141(2004), 157-183.
- [2] P. Alegre and A. Carriazo, Structures on Generalized Sasakian space forms, Differential Geom. Appl., 26(2008), 656-666.
- [3] P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian space forms, Taiwanese J. Math., 13(2009), 923-941.
- [4] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (κ, μ) space forms, Available on arXiv:~0812.2605v1, (2012),~1-20.
- [5] R. Al-Ghefari, F. R. Al-Solamy and M. H. Shahid, Cr-submanifolds of generalized Sasakian space forms, JP J. Geom. Topol., 6 (2006), 151-166.
- [6] I. Mihai, M. H. Shahid and F. R. Al-Solamy ,Ricci curvature of a contact CR-submanifolds of generalized Sasakian space forms, Rev. Bull. Calcutta Math. Soc., 13(2005), 89-94.
- [7] U. C. De and A. Sarkar Some results on generalized Sasakian space forms, *Thai J. Math.*, 8(2010), No. 1, 1-10.
- [8] U. C. De and A. Sarkar, On the projective tensor of generalized Sasakian space forms, Quaestiones Mathematicae, 33(2010), No. 2, 245-252.
- [9] UK. Kim, Conformally flat generalized Sasakian space forms and locally symmetric generalized Sasakian space forms, *Note Di Matematica*, 26(2006), No. 1, 55-67.
- [10] T. Koufogiorgos, Contact Riemannian manifolds with constant φ-sectional curvature, Tokyo. J. Math., 20(1997), 55-67.
- [11] A. Carriazo, V. L. Molina, Generalized (κ, μ) space forms and D_a -homothetic deformations, Balkan Journal of Geometry and Applications, Vol.16, No.1,2011, pp.37-47.
- [12] G. Chuman, On the D-conformal curvature tensor, Tensor N. S., Vol. 2, 46(1983), 125-134.

Contents
A New Approach on the Striction Curves Belonging to Bertrandian Frenet
Ruled Surfaces By Süleyman Şenyurt, Abdussamet Çalışkan
Mathematical Combinatorics with Natural Reality By Linfan MAO
The First Zagreb Index, Vertex-Connectivity, Minimum Degree and
Independent Number in Graphs By Zhongzhu Liu, Yizhi Chen and Siyan Li, 34
D-Conformal Curvature Tensor in Generalized (κ, μ) -Space Forms
By Barnali Laha43
Spectrum of (k,r) - Regular Hypergraphs
By K Reji Kumar and Renny P Varghese
On the Spacelike Parallel Ruled Surfaces with Darboux Frame
By Muradiye Çimdiker and Cumali Ekici
Rainbow Connection Number in the Brick Product Graphs $C(2n, m, r)$
By K.Srinivasa Rao and R.Murali
Mannheim Partner Curve a Different View
By Süleyman Şenyurt, Yasin Altun and Ceyda Cevahir
F-Root Square Mean Labeling of Graphs Obtained From Paths
By S. Arockiaraj, A. Durai Baskar and A. Rajesh Kannan
Some More 4-Prime Cordial Graphs
By R.Ponraj, Rajpal Singh and R.Kala
Some Results on a-graceful Graphs
By H M Makadia, H M Karavadiya and V J Kaneria
Supereulerian Locally Semicomplete Multipartite Digraphs
By Feng Liu, Zeng-Xian Tian, Deming Li
Non-Existence of Skolem Mean Labeling for Five Star
By A.Manshath, V.Balaji, P.Sekar and M.Elakkiya

An International Journal on Mathematical Combinatorics

